Biophysical modelling of the effects of inhaled radon progeny on the bronchial epithelium for the estimation of the relationships applied in the two-stage clonal expansion model of carcinogenesis.

نویسندگان

  • Balázs G Madas
  • Katalin Varga
چکیده

There is a considerable debate between research groups applying the two-stage clonal expansion model for lung cancer risk estimation, whether radon exposure affects initiation and transformation or promotion. The aim of the present study is to quantify the effects of radon progeny on these stages with biophysical models. For this purpose, numerical models of mutation induction and clonal growth were applied in order to estimate how initiation, transformation and promotion rates depend on tissue dose rate. It was found that rates of initiation and transformation increase monotonically with dose rate, whereas effective promotion rate decreases with time but increases sublinearly with dose rate. Despite the uncertainty of results due to the lack of experimental data, present study suggests that effects of radon exposure on both mutational events and clonal growth are significant and should be considered in mechanistic models of carcinogenesis applied for analysing epidemiological data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculating CR-39 Response to Radon in Water Using Monte Carlo Simulation

Introduction CR-39 detectors are widely used for Radon and progeny measurement in the air. In this paper, using the Monte Carlo simulation, the possibility of using the CR-39 for direct measurement of Radon and progeny in water is investigated. Materials and Methods Assuming the random position and angle of alpha particle emitted by Radon and progeny, alpha energy and angular spectrum that arri...

متن کامل

A study on radon and thoron progeny levels in dwellings in South India

Background: Decay products of radon and thoron present in indoor environment are the most important sources of radiation from natural sources which affect human beings, since general public spend at lest 80% of their time in indoor. Materials and Methods: Air samples were collected for measuring the concentration of radon and thoron daughter products from various indoor environments d...

متن کامل

Measurements of indoor radon, thoron and their progeny in Farrukhabad city of Uttar Pradesh, India

Background: More than 50% of the total dose received by human beings from all sources of radiation (both from natural and manmade) comes from radon and its progeny which is responsible for lung cancer in many cases. Materials and Methods: In the present study, the measurements have been carried out by using twin chamber dosimeter cups with LR-115 type-II detectors. The value of track ...

متن کامل

Variation of radon progeny concentration over a continental location

Background: The variation of the radon progeny concentration in outdoor environment and meteorological parameters at fine resolution were studied for one year at a continental location, National Atmospheric Research Laboratory, Gadanki, India.  Materials and Methods: The concentrations were measured using Alpha Progeny Meter by collecting air samples at a height of 1 m above the Earth&rsqu...

متن کامل

Measurement of inhalation dose due to radon and its progeny in an oil refinery and its dwellings .

Background: Radon, an invisible, odorless, heaviest (nine times heavier than air) and radioactive gas is an aberration (the only gas in the long decay chain of heavy metal elements). It is ubiquitously present in dwellings and in the environment. Humans receive the greatest radiation dose in their homes. That's where they spend most time - typically 70%, more for small children. Recent worldwid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Radiation protection dosimetry

دوره 159 1-4  شماره 

صفحات  -

تاریخ انتشار 2014